
Efficient Energy Research: Building an Advanced Language Model 
and Interface

STUDENTS: Najib Haidar, Whitney Waldinger, (Gerald) Ichiro Nakata, Akash Shetty, Brian Han, Aaron Hong, 
Benjamin Jiang, Joni Nguyen

ADVISERS: DHAHA NUR, RAJESH SUBRAMANYAN, ROSE JOHNSON

SPONSOR: ALASKA CENTER FOR ENERGY AND POWER

Query Response Generation

Background

Future Work

Data Input Workflow

Frontend Connection

Our Approach

Current Build & References

Github Repo

• PDFs: The data input pipeline accepts documents in PDF form for processing.

• DOI (Digital Object Identifier): A database which is queried to find any metadata 

associated with the document. 

• OCR (Optical Character Recognition): A machine learning model to retrieve the 

text from the PDF document. The currently used model is Tesseract.

• Chunker: Breaks the text into smaller sized files or chunks of text. This is 

important for LLM prompt token limitations.

• JSONs: A composite data file with the textual data from the OCR and Chunker as 

well as the metadata retrieved from the DOI database.

• Embedding Creation: The conversion of textual format to a numerical vectorized 

format. This is handled by Together AI using the m2-bert-80M-8k-retrieval model.

• Vector Database: The storage and reference module for the vectorized 

embeddings of the JSON files. MongoDB Atlas was utilized.

• Query: The question/prompt sent by the user. In our build sent by Axios.

• Vector Database: The embeddings which the query is compared to, so that the 

most similar embedding can be found.

• Most Similar Chunk: The chunk returned by the Vector Database in JSON 

format.

• Prompt: A composite block of information containing the Query, Most Similar 

Chunk, and statements to tune the LLM generation.

• LLM (Large Language Model): Generates the response with the given 

information from the prompt. The model used is Llama3.

• Response: The reply for the query generated by the LLM using the prompt. This 

is returned to the user through the website.

Fig 3. Data Input Flow Chart 

Fig 4. Query Response Flow Chart

Website

Goal: Create an open source LLM that can be utilized to assist in finding energy 

research documents to streamline answering of researcher’s questions.

Requirements:

• LLM able to respond based on database of energy research documents and 

hosted on a website.

• Open-source resources (as much as possible).

• Modular components for data pipelines.

• Return the documents from which the response is generated.

Fig 1. Overall Project Diagram

Fig 2. Frontend Flow Chart

• Used pre-existing models to streamline production process.

• Data processing pipeline constructed to handle PDF input to embeddings.

• Query response pipeline handles RAG (Retrieval Augmented Generation) 

functionality using the LLM.

• Website created to allow for interaction with the backend components.

References
• Flask: Acts as the backend framework that mediates interactions between the 

frontend and the LLM.

• Axios: HTTP client used in React App to send requests to backend.

• React.js: Framework used to build the interface of the website.

• Cloudflare Pages: Deployment platform for the website with seamless Git 

integration for UI updates. Has built in security.

• Website: The user access point for interacting with the system.

We would like to sincerely thank our Industry Mentor, Dhaha Nur, as well as 

our Faculty Mentor, Rajesh Subramanyan for their guidance during this 

project. Also, our thanks to ACEP and the University of Washington for the 

opportunity to work on this project. Last but not least, to our TA Mentor, 

Rose Johnson for keeping us on track.

Fig 5. Website Interface for ACEP LLM

There are a few different ways in which the project could be further developed.

• Formalized Testing: A formalized method of testing the capabilities of the 

chatbot’s recall and generation capabilities could be developed. The LLM is 

already an established model, so the testing would cover our application of it.

• Streaming Response: LLMs typically take a while to generate and send the 

full response, so streaming the response in chunks can be done to provide a 

more seamless response for queries.

• Saved Chat History: Saving chat for different users would be useful for 

picking up where researcher left off or for referencing past queries.


	Slide 1

